
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 4, APRIL 1989 761

Analysis ‘of Discontinuities in an Open Dielectric
Slab Waveguide by Combination of

Finite and Boundary Elements

KOICHI HIRAYAMA AND MASANORI KOSHIBA, SEN1ORMEMBER, IEEE

Abstract —A combination of the finite element and boundary element

methods is proposed for the solution of arbitrarily shaped discontinnities in

an open dielectric slab waveguide. The dkcontinuity region is divided into

two regions. One is a finite region with arbitrary inhomogeneities, and the

other is a semi-infinite and homogeneous region. The finite element and

boundary element methods are applied to the former and the latter region,

respectively. For uniform waveguide regions connected to discontinuities,

analytical solutions in which both the guided and the radiated modes are

taken into account are nsed. To show the validity and usefulness of this

approach, computed results are given for several kinds of diseontinuities,

and the accuracy of the solutions is investigated in detail.

I. INTRODUCTION

“D ISCONTINUITIES in an open dielectric slab wave-

guide play an important role in designing optical-

and millimeter-wave components. Various theoretical

methods for the solution of dielectric slab waveguide dis-

continuities have been developed [1]–[23]. Although these

methods are very useful for a step discontinuity or a

cascade of steps, it seems to be difficult to apply them to

arbitrarily shaped discontinuities. Recently, the integral

equation method (IEM) [24]–[27], the boundary element

method (BEM) [28], and the finite element method (FEM)

[29] -[32] have been presented for the solution of arbitrar-

ily shaped discontinuities. In [24]–[27] using the IEM,

however, only the weakly guiding structure is considered.

Also, the BEM cannot be effectively applied to a problem

involving inhomogeneous media. The FEM is very useful

for the arbitrarily shaped discontinuities including inho-

mogeneous media. However, in [29], although uniform

waveguide regions connected to discontinuities are treated

analytically as unbounded configurations, discontinuity re-

gions to which the FEM is applied are treated as corre-

sponding bounded ones. In [30]–[32], both uniform wave-

guide regions and discontinuity regions are treated as

bounded configurations.

In this paper, we present a novel numerical approach

based on a combination of finite and boundary elements

for the solution of discontinuities in an open dielectric slab

waveguide. The discontinuity region is divided into two
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Fig. 1 Geometry of problem.

regions. One is a finite region with arbitrary inhomo-

geneities; the other is a semi-infinite and homogeneous

region. The FEM and the BEM are applied to the former

and the latter region, respectively. The finite element can

be combined with the boundary element on the common

nodal points because these two methods are discretized in

the same way. Also, analytical solutions in which both the

guided and the radiated modes are taken into account are

used for uniform waveguide regions connected to disconti-

nuities. To show the validity and usefulness of this formu-

lation, computed results are given for a step, a gap, and a

triangular rib. The accuracy of the solution is investigated ‘

in detail.

II. BASIC EQUATIONS

Consider a symmetric mode excitation of the symmetric

slab waveguide shown in Fig. 1, where the boundary r. is

placed at infinity (y= m) and the boundary r, = ri~ + rl~

connects the discontinuities to the uniform waveguide

i (i =1,2). The region Q,F surrounded by the boundary

rF = rlF + I’zF + r3 and the symmetry plane (.Y = O) com-

pletely encloses the discontinuities. The region fl~ is sur-

rounded by the boundaries 17B= 1’1~ + rZB + r3 and To,

and d, and n ,J (j= L 2) are the half thickness ,and the
refractive index of waveguide i (nil > n ,2), respectively.

Assuming that there is no variation in the z direction,

we obtain the following basic equation:

(1)
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where

G=EZ Jl=l ~=nz for TE modes (2a)

q$=Hz ~=nz q=l for TM modes (2b)

kO=2~/A. (3)

Here EZ and H, are the z components of the electric and

magnetic fields, respectively, and A is the wavelength of a

plane wave in free space.
We define $ on rl, r2, and r~ as follows:

A. Finite

+ = - Adq/dx on rl (4a)

~ = ~d~jax on r2 (4b]

+ = – Aa+/ay On r3. (4C]

111. MATHEMATICAL FORMULATION

Element Approach for QF

Dividing the region !2F into a number of quadratic

triangular elements [29] –[33], using a Galerkin procedure

on (l), considering the contributions of all elements, and

eliminating internal variables, namely the nodal points in

QF except r~ [31], [33], we obtain the following small-sized

matrix equation:

[A]{@ }~=[B]{J}~ (5)

where the components of the { @} ~ and { ~ } ~ vectors are

the values of @ and + at the nodal points on r~, respec-

tively, and [A] and [B] are the finite element matrices

[29] -[33].

B. Boundary Element Approach for QB

Applying the BEM with quadratic line element [34] to

the region fl~ and considering the radiation condition on

rO, we obtain the following matrix equation:

[H]{+ }B=[G]{+}B (6)

where the components of the { @} ~ and { $ } ~ vectors are

the values of @ and ~ at the nodal points on 17~,respec-

tively, and [H] and [G] are the boundary element matrices

[34].

C. Analytical Approach

Assuming that the fundamental mode (m= O) of unit

amplitude is incident from the left side of waveguide 1 in

Fig. 1, @ on 17L(i= 1, 2) may be expressed analytically as

+,= 512w (– .AoX1).flo(Y)

i=l,2 (7)

where O, and +, are the values of @ and ! on r,,

respectively, 6{1 is the Kronecker 8, and M, is the number

of guided modes in waveguide i. A summary of the mode

functions .L(Y), g,m(y), f(P, Y), and g,(m .Y) and of the
propagation constants ~,w and ~,(p) is given in the Ap-

pendix.

We discretize (7) as follows:

where

{f}, =2exp(- .j&0.q){f0}, (9a)

M,–1

[Z]z= ~ {fro}, _;mA{&}:
~=lj 1

+Jm{f(P)}l _ jB:(p)A{W)}:dP (gb)
o

(9C)

(9d)

Here the components of the { ~W,}, and { f(p)}, vectors are

the values of j&(y) and ~ ( p, y) at the nodal points on I’,,

respectively, {N}, is the shape, function vector [29]–[34]

on 17Z,and the superscript T denotes a transpose.

D. Combination of Finite and Boundary Elements

From (5), (6), and (8), we obtain the following final

matrix equation:

I
[A’]

[H’]
————___
[1][0][0]

[0][1][0]

-[B’]

- [G’]
-————————————

-[z], [0] [0]

[0] - [Z]2[O]

{o}

{o}
————

{f}l

{0}

(10)

where the components of the { @}, and { ~ }, vectors are

the values of @ and + at the nodal points on ‘r, (i= 1,2, 3),

respectively, [1] is a unit matrix, [0] is a null matrix, and

{O} is a null vector. The columns of [A’] and [B’] corre-

sponding to the nodal points on r~ are the same as those

of [A] and [B], respectively, and the others are zero.

Similarly, the columns of [H’] and [G’] corresponding to

the nodal points on r~ are the same as those of [H] and

[G], respectively, and the others are zero.

The solutions of (10) allow the determination of the

normalized reflected power IR WI12 and the normalized

transmitted power IT~ 12of the M th mode, and the normal-
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Fig. 2. Step discontinuity.

ized radiated power Pi, in waveguide i as follows:

(ha)

“{~(P)}FdP{4}i, i=l,2 (llC)

where the dagger denotes a Hermitian conjugate, and the

integral with respect to p in (1 lc) is calculated numerically.

IV. COMPUTED RESULTS

For numerical computation, introducing a parameter D,

we divide the integrals with respect to y in the boundary

element approach into two parts, that is, those in Y3 < y <

D (the boundary 173on which the finite element and the

boundary element are combined is located at y = y3) and

those in D < y < co. Also, we divide the integrals with

respect to y in the analytical approach into two parts, that

is, those in O < y < D and those in D < y < ee. In each

approach, the first part of the integrals is calculated ana-

lytically and the second part can be neglected by choosing

the value of D adequately. Furthermore, introducing a

parameter Ci, we divide the integrals with respect to p in

the analytical approach into three parts, that is, those in

O < P < n i2ko (propagat@ part), those in ~i2~o < P <

Cin i2ko (nonpropagating part), and those in Cin i2ko < P <

cm (nonpropagating part), where the first two parts are

calculated numerically and the last part can be neglected

by choosing the value of Ci( Ci > 1) adequately. For simplic-

ity the relation c1 = C2= c is used below. Also, a double-

exponential formula [35] is used for the numerical integra-

tion over p.

First, to check the validity of our approach, we consider

a step discontinuity as shown in Fig. 2, where nl = &,

n z =1, d2 = A /27i-, and the fundamental TE mode inci-

dence is assumed. Convergence of the solution is checked
by changing the four parameters, namely, element division

and values of c, D, and Y3. Three element divisions used

in this calculation are shown in Fig. 3.

Table I shows the variation of solutions with element

division, where c =4, D = 3A, YJ = 2A, and l’, represents

total radiated power, namely P,= PI, + P2,. The difference

T 1132 A132 ‘ k132 w32
(a) (b) (c)

Fig. 3. Element divisions of a step (dl \d2 = 0.2).

TABLE I
COMPARISON BETWEEN SOLUTIONS FOR THE DIVISIC~NS IN

FIG, 3(a) AND (b)

d,/d, division IRo[2 x -ArgRo \Tolz

E

‘kg’L, Pr

Fig. 3 (a) 0:0100 0.3073 0.3620 0.058[ 0.6278
0.04

Fig. 3 (b) 0.0100 0.3075 0.3620 0.0582 0.6278

Fig. 3 (a) 0.0416 0.0884 0.8865 0.0066 0.0715
0.2

Fig. 3 (b) 0.0416 0.0886 0.8866 0.0066 0.0715

between the solutions for the divisions in Fig. 3(a) and (b)

is very small.

Fig. 4 shows the reflected power, the radiated power,

and the phase of reflection coefficient versus l/c, where

D = 3A and ~3 = 2A. The solid and broken lines are for the

divisions in Fig. 3(a) and (c), respectively. The variation of

the reflected and radiated powers with the value of c is

very small. All the solutions converge as l/c approaches

zero. The solutions for the division in Fig. 3(c) converge

faster than those for the division in Fig. 3(a). In the case

where dl/d2 = 0.2 (Fig. 4(b)), the convergent values for

the divisions in Fig. 3(a) and (c) agree well in the reflected

power and the phase of reflection coefficient, but differ

slightly in the radiated power. This is because the power

conservation error increases with the distance between a

step and a boundary l?, (i =1,2). For c = 8, for example,

the power conservation errors for the divisions in Fig. 3(a)

and (c) are about 0.039 percent and ‘0.059 percent, respec-

tively. The difference between these errors is almost equal

to the difference between the radiated powers calculated

by using the divisions in Fig. 3(a) and (c). In the case

where dl /d2 = 0.04 (Fig. 4(a)), on the other hand, all the

convergent values for the divisions in Fig. 3(a) and (c)

differ. This is because the field of the guided mode in

waveguide 1 extends widely over the y direction. In this

case 3A is not adequate for the value of D. The magnitude

of the guided mode at y = 3A normalized by that at y = O

in waveguide 1 is about 0.05 for dl/dl = 0.04, whereas it is
about 10’6 for dl/d2 = 0.2.

Figs. 5 and 6 show the normalized powers and the

phases of the reflection and transmission coefficients ver-

sus A/D, respectively, where c = 4, y3 = D – A, and the

division in Fig. 3(c) is used. The solid lines represent
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Fig. 4. Normalized power and phase of reflection coefficient versus I/c

for a step. The solid and broken lines show the solutions for the
divisions in Fig. 3(a) and (c), respectively.

computed results and the broken lines are the regression

lines calculated from the results of D/A= 7, 8, 9, 10, and

11. The extrapolated values at D -+ m are also shown in

Figs. 5 and 6. The variation of solutions with the value of

D is very small except for the phase of the reflection

coefficient for dl/d2 = 0.04. In the case where dl/dl = 0.2,

as shown in Figs. 5(b) and 6(b), the power conservation

error decreases with the value of D and the radiated power

increases by almost the same amount, but the other solu-

tions remain almost unchanged over 3< D/A <11. This

fact also holds in the range of D/A> 5 for dl/d2 = 0.04,

as shown in Figs. 5(a) and 6(a), while in the range of

D/A <5 itdoes not hold due to the wide extension of the

guided mode in waveguide 1. Consequently, it seems that

several times the free-space wavelength for the value of D

yields accurate solutions, and that the extrapolated values

at D ~ m yield more accurate ones. For the finite value of

D, poor estimation of radiated power is caused by neglect-

ing the contributions from the electromagnetic fields in the

region y > D on rl and 172.

Table II shows the variation of solutions with the posi-

tion of I’q (y = yq). The solutions hardly depend on the

value of y~.
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Fig. 5. Normalized power versus l/D for a step.
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TABLE II

VARIATION OF SOLUTIONS WITH POSITION OF THE BOUNDARY 173

COMBINING FINITE AND BOUNDARY ELEMENTS

d,ldz YAt IR012 ~ -Armo IT” I’ -ArgT. pv

1 0.0103 0.2901 0.3620 0.0582 0.6271

2 0 0103 0.2902 0.3620 0.0583 0.6271
0.04

3 0.0103 0.2903 0.3620 0 0583 0 6271

4 0.0103 0.2905 0.3620 0.0584 0.6271

1 0.0416 0.0863 0.8865 0.0072 0.0715

2 0.0416 0.0864 0.8865 0.0072 0.0715
0.2

3 0.0416 0.0864 0.8865 0.0072 0.0715

4 0.0416 0.0865 0.8865 0.0072 0.0715
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Fig. 7. Scattering characteristics of a step.

Fig. 7 shows the scattering characteristics of a step. Our

results agree well with those of Rozzi [6] and Hosono et al.

[12].

Next, we consider a gap as shown in Fig. 8, where

nl = 2.236, n2 =1, d = X /2m, and the fundamental TE

mode incidence is assumed. The scattering characteristics

are shown in Fig. 9.

Y

t
n2

Fig. 8. Gap discontinuity.
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Fig, 9. Scattering characteristics of a gap.

Y

Fig. 10. Triangular rib.

Finally, we consider a triangular rib as shown in Fig. 10,
where nl = 3.4, nz =1, d = 0.075A, h/d =1 cm 0.5, and

the fundamental TM mode incidence is assumed. The

scattering characteristics are shown in Fig. 11.

For both cases, the guided modes are well confined

inside and near the core, and therefore 3A is sufficient for
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discontinuity region is divided into two regions. One is a

finite region with arbitrary inhomogeneities, and the other

is a semi-infinite and homogeneous region. The FEM and

the BEM are applied to the former and the latter region,

respectively. For uniform waveguide regions connected to

discontinuities, analytical solutions in which both the

guided and the radiated modes are taken into account are

used.

To show the validity and usefulness of this formulation,

computed results are given for a step, a gap, and a triangu-

lar rib. For a step, the convergence behavior of the solu-

tion is investigated in detail. Convergent values for the

reflected and transmitted powers are obtained with suffi-

cient accuracy. The cause of the power conservation error

is almost due to the error for the radiated power. When the

total normalized power P, = 1 – c, we can modify the radi-

ated power P, as P, + c.

This approach can be easily extended to discontinuities

in an asymmetric slab waveguide.

APPENDIX

For simplicity the subscript i (i= 1, 2) is abbreviated.

A. Guided Modes

‘“(y)=/2”(’) (Al)

bid

(b) 1 h~(y)

Fig. 11. Scattering characteristics of a triangular nb. ‘m(y) = m P(Y)

(A2)

the value of D. The reference planes for the phase of the

reflection and transmission coefficients are x = O and x = b

(See Figs. 8 and 10), respectively, and the distance between

the discontinuity and the boundary r, (i= 1, 2) is A/32.

It is found from Fig. 9 that the phases decrease linearly

as the gap becomes wide, and that our results for the

magnitude of the reflection coefficient agree well with

those of Tsuji and Shigesawa [21], [22].

Note in Fig. 11 that the phase of the reflection coeffi-

cient rapidly becomes large and the magnitude becomes a

minimum near b\d = 0.7 or 0.4 in h/d = 1 or 0.5, respec-

tively, and that a significant amount of radiation, more

than 20 percent, appears for b/d> 2 or 3 in h/d= 1 or

0.5, respectively. Also, a power conservation error of about

2 percent exists near b/d= 5 in both cases of h/d= 1 and

0.5. This is due to the fact that the estimated value for the

total radiated power is about 2 percent smaller, while the

reflection and transmission coefficients are both obtained

with sufficient accuracy.

V. CONCLUSIONS

A combined method of the finite and boundary ele-

ments is formulated for the solution of arbitrarily shaped

discontinuities in an open dielectric slab waveguide. The

~ = m (hm(y))’ dy
m Jo P(Y)

( (O<y<d)
P(Y) = ;’

(d<y<m)

(A3)

(A4)

(Awl(Y) = cOsKmy
(O<y<d)

cos Kn,dexp{–yM(y– d)} (d<y< co)

(A5)

where p] (j =1,2) is 1 for TE modes and n? for TM
modes.

The dispersion relation for ~~ is given as

where

f%=m

(A6)

(A7)

(A8)
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B. Radiated Modes

mjY)=& --#Y)

h(p, y)
g(P, Y) = 1* P(Y)

D(p)a(p -p’) =Jmh(p’;~yy”~) dy

(

COSK(fl)Y

(A9)

(A1O)

(All)

(O<y<d)

Icossc(p)dcosp(y -d)
h(p, y)=

P2K(P)

–—sin~(p)d sinp(y–d)
PIP

\ (d<y<m)

(A12)

(A13)

K(p) = (n:–n:)k; +pz (A14)

where S( p – p’) is the Dirac S3function.

C. Orthonormal Conditions

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Jmfm(Y)~nr(Y)dY= 8nr~ (A”

J:fm(kxP>Y)dY=o (A”
o

5)

6)

J%P>YMP’7YMY=NP-P’)- (A1’7)
o
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