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Analysis of Discontinuities in an Open Dielectric
Slab Waveguide by Combination of
Finite and Boundary Elements

KOICHI HIRAYAMA AND MASANORI KOSHIBA, SENIOR MEMBER, IEEE

Abstract — A combination of the finite element and boundary element
methods is proposed for the solution of arbitrarily shaped discontinuities in
an open dielectric slab waveguide. The discontinuity region is divided into
two regions. One is a finite region with arbitrary inhomogeneities, and the
other is a semi-infinite and homogeneous region. The finite element and
boundary element methods are applied to the former and the latter region,
respectively. For uniform waveguide regions connected to discontinuities,
analytical solutions in which both the guided and the radiated modes are
taken into account are used. To show the validity and usefulness of this
approach, computed results are given for several kinds of discontinuities,
and the accuracy of the solutions is investigated in detail.

I. INTRODUCTION

ISCONTINUITIES in an open dielectric slab wave-

guide play an important role in designing optical-
and millimeter-wave components. Various theoretical
methods for the solution of dielectric slab waveguide dis-
continuities have been developed [1]-[23]. Although these
methods are very useful for a step discontinuity or a
cascade of steps, it seems to be difficult to apply them to
arbitrarily shaped discontinuities. Recently, the integral
equation method (IEM) [24]-{27], the boundary element
method (BEM) [28], and the finite element method (FEM)
[29]1-[32] have been presented for the solution of arbitrar-
ily shaped discontinuities. In [24]-{27] using the IEM,
however, only the weakly guiding structure is considered.
Also, the BEM cannot be effectively applied to a problem
involving inhomogeneous media. The FEM is very useful
for the arbitrarily shaped discontinuities including inho-
mogeneous media. However, in [29], although uniform
waveguide regions connected to discontinuities are treated
analytically as unbounded configurations, discontinuity re-
gions to which the FEM is applied are treated as corre-
sponding bounded ones. In [30}-[32], both uniform wave-
guide regions and discontinuity regions are treated as
bounded configurations.

In this paper, we present a novel numerical approach
based on a combination of finite and boundary elements
for the solution of discontinuities in an open dielectric slab
waveguide. The discontinuity region is divided into two
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Fig. 1  Geometry of problem.

regions. One is a finite region with arbitrary inhomo-
geneities; the other is a semi-infinite and homogeneous
region. The FEM and the BEM are applied to the former
and the latter region, respectively. The finite element can
be combined with the boundary element on the common
nodal points because these two methods are discretized in
the same way. Also, analytical solutions in which both the
guided and the radiated modes are taken into account are
used for uniform waveguide regions connected to disconti-
nuities. To show the validity and usefulness of this formu-
lation, computed results are given for a step, a gap, and a
triangular rib. The accuracy of the solution is investigated '
in detail.

I1. Basic EQUATIONS

Consider a symmetric mode excitation of the symmetric
slab waveguide shown in Fig. 1, where the boundary I} is
placed at infinity (y = o0) and the boundary I, =T+ I3
connects the discontinuities to the uniform waveguide
i (i=1,2). The region @, surrounded by the boundary
[.=1,r+T,;+T; and the symmetry plane (y = 0) com-
pletely encloses the discontinuities. The region {5 is sur-
rounded by the boundaries Iy =T, + I, +T; and [},
and d, and n,, (j=1,2) are the half thickness and the
refractive index of waveguide i (n,; > n,,), respectively.

Assuming that there is no variation in the z direction,
we obtain the following basic equation:

1{d% 3% R
—(—+—z)+k5q¢=0

1
plax?  dy ()
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where
¢=E, p=1 g=n> for TEmodes (2a)
o=H, p=n* ¢g=1  forTM modes (2b)
ko=2a/\. 3)

Here E, and H, are the components of the electric and
magnetic fields, respectively, and A is the wavelength of a
plane wave in free space.

We define ¢ on I'}, T}, and I as follows:

Y=-—Nd¢/Ix on I (4a)
Y=2A3¢/0x on I, (4b)
Y=—Ad¢/dy on T3. (4c)

11
A. Finite Element Approach for Qp

MATHEMATICAL FORMULATION

Dividing the region {, into a number of quadratic
triangular elements [29]-[33], using a Galerkin procedure
on (1), considering the contributions of all elements, and
eliminating internal variables, namely the nodal points in
Qr except 'y {31], [33], we obtain the following small-sized
matrix equation:

Ao} r=[Bl{¥} s (5)

where the components of the {¢}, and {{ } vectors are
the values of ¢ and ¢ at the nodal points on I'y, respec-
tively, and [A] and [B] are the finite element matrices
[29]-[33].

B. Boundary Element Approach for Qg

Applying the BEM with quadratic line element [34] to
the region €, and considering the radiation condition on
T},. we obtain the following matrix equation:

[H]{¢}s=[G1{¥}s (6)

where the components of the {¢}, and {{}, vectors are
the values of ¢ and ¢ at the nodal points on I',, respec-
tively, and [H] and [G] are the boundary element matrices
[34].

C. Analytical Approach

Assuming that the fundamental mode (m =0) of unit
amplitude is incident from the left side of waveguide 1 in
Fig. 1, ¢ on I' (i =1,2) may be expressed analytically as

¢, = 8,2exp (— jByox1) f1o(¥)

M -1
S S(Y) e )
+ m{ZO VA g (V)Y (x,, ") dy
+f°°———f'("’y) [ 80, )0, (5, ) ' d
o —JB(p)AJo T e '

i=1,2 (7)
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where ¢, and y, are the values of ¢ and ¢ on I,
respectively, §,, is the Kronecker 8, and M, is the number
of guided modes in waveguide i. A summary of the mode
functions f,,,(»), 8&.(»), f,(p, »), and g(p, y) and of the
propagation constants §8,, and B,(p) is given in the Ap-

pendix.
We discretize (7) as follows:
{0}, =8, {f}i+[Zz].{¥}, (®)
where
{f}1=2exp (= jBiox:){ fo } (92)
Z () 5 8
1
[T U0 =y (8(e)) e (o)
{8}, ng,m(y {N}, a7 (9¢)

(£(0)}, =X [2(p, ) (N}, 4" (%)

Here the components of the { f,,}, and { f(p)}, vectors are
the values of f,,,(y) and f,(p, y) at the nodal points on T,
respectively, { N}, is the shape function vector [29]-[34]
on I', and the superscript T denotes a transpose.

D. Combination of Finite and Boundary Elements

From (5), (6), and (8), we obtain the following final
matrix equation:

{¢}11
) {1 )| tek| [ @
el e | o
[1][0][0]E —[z], [o][o] || {¥}: {fh
[o][1][o] }  [0] —[Z],[0] || (¥}, {0}
{¥15]

(10)

where the components of the {¢}, and {4}, vectors are
the values of ¢ and v at the nodal points on T, (i =1,2,3),
respectively, [1] is a unit matrix, [0] is a null matrix, and
{0} is a null vector. The columns of [A4’] and [B’] corre-
sponding to the nodal points on 'y are the same as those
of [A4] and [B], respectively, and the others are zero.
Similarly, the columns of [H’] and [G’] corresponding to
the nodal points on I'; are the same as those of [H] and
[G], respectively, and the others are zero.

The solutions of (10) allow the determination of the
normalized reflected power |R,|*> and the normalized
transmitted power |7, |* of the mth mode, and the normal-
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Fig. 2. Step discontinuity.

ized radiated power P, in waveguide i as follows:

IR, |”= ’;11’0" moexp(—j&wﬂtﬁ{g;}f{wl
(11a)
=t gy (11b)
B | = B , _
P, - Bfox{w}?j;””kfﬂi(i)x{g<p)}i
{8(p)} do{¥},, =12 (llo)

where the dagger denotes a Hermitian conjugate, and the
integral with respect to p in (11c) is calculated numerically.

IV. CoMPUTED RESULTS

For numerical computation, introducing a parameter D,
we divide the integrals with respect to y in the boundary
element approach into two parts, that is, those in y; < y <
D (the boundary T, on which the finite element and the
boundary element are combined is located at y = y;) and
those in D < y <co. Also, we divide the integrals with
respect to y in the analytical approach into two parts, that
is, those in 0 < y < D and those in D < y<oo. In each
approach, the first part of the -integrals is calculated ana-
Iytically and the second part can be neglected by choosing
the value of D adequately. Furthermore, introducing a
parameter c;, we divide the integrals with respect to p in
the analytical approach into three parts, that is, those in

' 0 < p<nyk, (propagating part), those in n,k,<p<

¢;n;,ky (nonpropagating part), and those in ¢;n,ky < p <
oo (nonpropagating part), where the first two parts are
calculated numerically and the last part can be neglected
by choosing the value of ¢;(c, >1) adequately. For simplic-
ity the relation ¢, = ¢, = c is used below. Also, a double-
exponential formula {35] is used for the numerical integra-
tion over p.

First, to check the validity of our approach, we consider

a step discontinuity as shown in Fig. 2, where n =vs,
n,=1, d,=\A/27, and the fundamental TE mode inci-
dence is assumed. Convergence of the solution is checked
by changing the four parameters, namely, element division
and values of ¢, D, and y;. Three element divisions used
in this calculation are shown in Fig. 3.
Table I shows the variation of solutions with element
division, where ¢ =4, D =3A, y; =2\, and P, represents
total radiated power, namely P, = P, + P,,. The difference
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Fig. 3. Element divisions of a step (d; /d, = 0.2).

TABLE I
COMPARISON BETWEEN SOLUTIONS FOR THE DIVISIONS IN
FIG. 3(a) AND (b)

di/dz | division | JRe|? | T-ArgRe | 1Tol? | -ArgTs Py
004 Fig.3(a) | 0.0100 [ 0.3073 0.3620 0.0581 | 0.6278
Fig.ﬁ(l’))‘ 0.0100 | 0.3075 |[0.3620. 0.0582 | 0.6278
02 Figﬁ(a} 0.0416 | 0.0884 [ 0.8865 | 0.0066 | 0.0715
Fig.3 (b} | 0.0416 | 0.0886 | 0.8866 | 0.0066 | 0.0715

between the solutions for the divisions in Fig. 3(a) and (b)
is very small.

Fig. 4 shows the reflected power, the radiated power,
and the phase of reflection coefficient versus 1/c, where
D =3\ and y; = 2\. The solid and broken lines are for the
divisions in Fig. 3(a) and (c), respectively. The variation of
the reflected and radiated powers with the value of ¢ is
very small. All the solutions converge as 1/c¢ approaches
zero. The solutions for the division in Fig. 3(c) converge
faster than those for the division in Fig. 3(a). In the case
where d,/d,=0.2 (Fig. 4(b)), the convergent values for
the divisions in Fig. 3(a) and (c) agree well in the reflected
power and the phase of reflection coefficient, but differ
slightly in the radiated power. This is because the power
conservation error increases with the distance between a
step and a boundary T; (i=1,2). For ¢=38, for example,
the power conservation errors for the divisions in Fig. 3(a)
and (c) are about 0.039 percent and 0.059 percent, respec-
tively. The difference between these errors is almost equal
to the difference between the radiated powers calculated
by using the divisions in Fig. 3(a) and (c). In the case
where d, /d, = 0.04 (Fig. 4(a)), on the other hand, all the
convergent values for the divisions in Fig. 3(a) and (c)
differ. This is because the field of the guided mode in
waveguide 1 extends widely over the y direction. In. this
case 3\ is not adequate for the value of D. The magnitude
of the guided mode at y = 3A normalized by that at y =0
in waveguide 1 is about 0.05 for d, /d, = 0. 04 whereas it is
about 1076 for d, /d, =0.2.

Figs. 5 and 6 show the normalized powers and the
phases of the reflection and transmission coefficients ver-
sus A /D, respectively, where ¢=4, y;=D — A, and the
division in Fig. 3(c) is used. The solid lines represent
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Fig. 4. Normalized power and phase of reflection coefficient versus 1 /¢
for a step. The solid and broken lines show the solutions for the
divisions in Fig. 3(a) and (c), respectively.

computed results and the broken lines are the regression
lines calculated from the results of D/A =7, §, 9, 10, and
11. The extrapolated values at D — oo are also shown in
Figs. 5 and 6. The variation of solutions with the value of
D is very small except for the phase of the reflection
coefficient for d, /d, = 0.04. In the case where d, /d, = 0.2,
as shown in Figs. 5(b) and 6(b), the power conservation
error decreases with the value of D and the radiated power
increases by almost the same amount, but the other solu-
tions remain almost unchanged over 3< D/A <11. This
fact also holds in the range of D/A > 5 for d,/d, = 0.04,
as shown in Figs. 5(a) and 6(a), while in the range of
D /X < 5 it does not hold due to the wide extension of the
guided mode in waveguide 1. Consequently, it seems that
several times the free-space wavelength for the value of D
yields accurate solutions, and that the extrapolated values
at D —» oo yield more accurate ones. For the finite value of
D, poor estimation of radiated power is caused by neglect-
ing the contributions from the electromagnetic fields in the
region y > D on I and T5.

Table II shows the variation of solutions with the posi-
tion of I (y = ;). The solutions hardly depend on the
value of y;.
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Fig. 5. Normalized power versus A /D for a step.
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TABLE II

VARIATION OF SOLUTIONS WITH POSITION OF THE BOUNDARY I}

COMBINING FINITE AND BOUNDARY ELEMENTS

di/dz | ¥3/h [Rol? T -ArgRo |Tolz -Arglo Py
1 0.0103 [ 0.2901 |{0.3620)0.0582 | 0.6271
004 2 0 0103 | 0.2902 | 0.3620 | 0.0583 | 0.6271
' 3 0.0103 | 0.2903 | 0.3620 | 0 0583 | 0 6271
4 10.0103] 0.2905 |0.362010.0584 | 0.6271
1 |0.0416] 0.0863 | 0.88650.0072|0.0715
02 2 10.0416| 0.0864 |0.8865|0.0072]0.0715
’ 3 0.0416 0.0864' 0.8865 | 0.007210.0715
4 0.0416 | 0.0865 | 0.8865|0.0072 0.0715
1.0
iTo!l
--Rozzi
—Present
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00001 o1
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Fig. 7. , Scattering characteristics of a step.

Fig. 7 shows the scattering characteristics of a step. Our
results agree well with those of Rozzi [6] and Hosono et al.

[12].

Next, we consider a gap as shown in Fig. 8, where
n,=2236, ny=1, d=\/2n, and the fundamental TE
mode incidence is assumed. The scattering characteristics

are shown in Fig. 9.
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Finally, we consider a triangular rib as shown in Fig. 10,
where n,=3.4, n,=1, d=0075\, h/d=1 or 0.5, and
the fundamental TM mode incidence is assumed. The
scattering characteristics are shown in Fig. 11.

For both cases, the guided modes are well confined
inside and near the core, and therefore 3 is sufficient for
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Fig. 11.

the value of D. The reference planes for the phase of the
reflection and transmission coefficients are x =0and x =5
(See Figs. 8 and 10), respectively, and the distance between
the discontinuity and the boundary [, (i =1,2) is A /32.

It is found from Fig. 9 that the phases decrease linearly
as the gap becomes wide, and that our results for the
magnitude of the reflection coefficient agree well with
those of Tsuji and Shigesawa [21], [22].

Note in Fig. 11 that the phase of the reflection coeffi-
cient rapidly becomes large and the magnitude becomes a
minimum near b/d = 0.7 or 0.4 in 4 /d =1 or 0.5, respec-
tively, and that a significant amount of radiation, more
than 20 percent, appears for b/d >2 or 3in h/d =1 or
0.5, respectively. Also, a power conservation error of about
2 percent exists near b/d =5 in both cases of 4 /d =1 and
0.5. This is due to the fact that the estimated value for the
total radiated power is about 2 percent smaller, while the
reflection and transmission coefficients are both obtained
with sufficient accuracy.

V. CONCLUSIONS

A combined method of the finite and boundary ele-
ments is formulated for the solution of arbitrarily shaped
discontinuities in an open dielectric slab waveguide. The
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discontinuity region is divided into two regions. One is a
finite region with arbitrary inhomogeneities, and the other
is a semi-infinite and homogeneous region. The FEM and
the BEM are applied to the former and the latter region,
respectively. For uniform waveguide regions connected to
discontinuities, analytical solutions in which both the
guided and the radiated modes are taken into account are
used.

To show the validity and usefulness of this formulation,
computed results are given for a step, a gap, and a triangu-
lar rib. For a step, the convergence behavior of the solu-
tion is investigated in detail. Convergent values for the
reflected and transmitted powers are obtained with suffi-
cient accuracy. The cause of the power conservation error
is almost due to the error for the radiated power. When the
total normalized power P,=1— ¢, we can modify the radi-
ated power P, as P, +e.

This approach can be easily extended to discontinuities
in an asymmetric slab waveguide.

A APPENDIX
For simplicity the subscript i (i =1.2) is abbreviated.

A. Guided Modes

1

fu(y) = Ehm(y) (A1)
£nl) = = 2 (a2)
o
p(y)={§i ((giijfo)) (A4)
hn(7) = {EZ?ZZZexp{_ym@_ d)) 831))
(AS)

where p, (j=1,2)is 1 for TE modes and nj2 for T™
modes.
The dispersion relation for B, is given as

tan Kmd = plYnz/pZKm (A6)

where
= k3 7 (A7)
Yo =V B — 3k - (A8)
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B. Radiated Modes

1
f(P,Y)=Wh(P,y) (A9)

_ 1 k(e y)
D(p)8(p=0) = [ ””(”—;)("y()”—ﬁ (A11)
cosk(p)y (O<y<d)

cosk(p)dcosp(y—d)

_BE ( )smic(p)dsmp(y d)

h(p,y)=

(d<y<oeo)
(A12)
8(0) n3kg—p* (0<p<nyky)
p =
—Jyp > —nik] (nyko<p <o0)
(A13)
k(p) =/(n—n3)kd +0? (A14)
where 8(p — p’) is the Dirac 8 function.
C. Orthonormal Conditions
0
o
fo fn(»)g(p, y)dy=0 (A16)

fowf(P, »)gle’,y)dy=38(p=0).  (A17)
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